q-Coherent pairs and q-orthogonal polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

q-Coherent pairs and q-orthogonal polynomials

In this paper we introduce the concept of q coherent pair of linear functionals. We prove that if ðu0; u1Þ is a q coherent pair of linear functionals, then at least one of them has to be a q classical linear functional. Moreover, we present the classification of all q coherent pairs of positive definite linear functionals when u0 or u1 is either the little q Jacobi linear functional or the litt...

متن کامل

Q-Hermite Polynomials and Classical Orthogonal Polynomials

We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...

متن کامل

Ladder Operators for q-orthogonal Polynomials

The q− difference analog of the classical ladder operators is derived for those orthogonal polynomials arising from a class of indeterminate moments problem.

متن کامل

q-Poisson, q-Dobinski, q-Rota and q-coherent states

The q-Dobinski formula may be interpreted as the average of powers of random variable X q with the q-Poisson distribution. Forty years ago Rota G. C. [1] proved the exponential generating function for Bell numbers B n to be of the form ∞ n=0 x n n! (B n) = exp(e x − 1) (1) using the linear functional L such that L(X n) = 1, n ≥ 0 (2) Then Bell numbers (see: formula (4) in [1]) are defined by L(...

متن کامل

2 00 8 Leonard pairs and the q - Racah polynomials ∗

Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2002

ISSN: 0096-3003

DOI: 10.1016/s0096-3003(01)00072-8